Micromachines, cilt.15, sa.8, 2024 (SCI-Expanded)
This paper introduces a cost-effective, high-performance approach to achieving wafer level vacuum packaging (WLVP) for MEMS-based uncooled infrared sensors. Reliable and hermetic packages for MEMS devices are achieved using a cap wafer that is formed using two silicon wafers, where one wafer has precise grating/moth-eye structures on both sides of a double-sided polished wafer for improved transmission of over 80% in the long-wave infrared (LWIR) wavelength region without the need for an AR coating, while the other wafer is used to form a cavity. The two wafers are bonded using Au-In transient liquid phase (TLP) bonding at low temperature to form the cap wafer, which is then bondelectrical and Electronics d to the sensor wafer using glass frit bonding at high temperature to activate the getter inside the cavity region. The bond quality is assessed using three methods, including He-leak tests, cap deflection, and Pirani vacuum gauges. Hermeticity is confirmed through He-leak tests according to MIL-STD 883, yielding values as low as 0.1 × 10−9 atm·cc/s. The average shear strength is measured as 23.38 MPa. The package pressure varies from 133–533 Pa without the getter usage to as low as 0.13 Pa with the getter usage.