Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Petrol ve Doğal Gaz Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2008
Öğrenci: CANKAT HAPA
Danışman: SERHAT AKIN
Özet:Reservoir permeability is one of the important parameters derived from well test analysis. Small-scale permeability measurements in wells are usually made using core plugs, or more recently, probe permeameter measurements. Upscaling of these measurements for comparisons with permeability derived well tests (Pressure Build-Up) can be completed by statistical averaging methods. Well Test permeability is often compared with one of the core plug averages: arithmetic, geometric and harmonic. A question that often arises is which average does the well test-derived permeability represent and over what region is this average valid? A second important question is how should the data sets be reconciled when there are discrepancies? In practice, the permeability derived from well tests is often assumed to be equivalent to the arithmetic (in a layered reservoir) or geometric (in a randomly distributed permeability field) average of the plug measures. These averages are known to be members of a more general power-average solution. This pragmatic approach (which may include an assumption on the near-well geology) is often flawed due to a number of reasons, which is tried to be explained in this study. The assessment of in-situ, reservoir permeability requires an understanding of both core (plug and probe) and well test measurements in terms of their volume scale of investigation, measurement mechanism, interpretation and integration. Pressure build-up tests for 26 wells and core plug analysis for 32 wells have valid measured data to be evaluated. Core plug permeabilities are upscaled and compared with pressure build-up test derived permeabilities. The arithmetic, harmonic and geometric averages of core plug permeability data are found out for each facies and formation distribution. The reservoir permeability heterogeneities are evaluated in each step of upscaling procedure by computing coefficient of variation, The Dykstra-Parson’s Coefficient and Lorenz Coefficients. This study compared core and well test measurements in South East of Turkey heavy oil carbonate field. An evaluation of well test data and associated core plug data sets from a single field will be resulting from the interpretation of small (core) and reservoir (well test) scale permeability data. The techniques that were used are traditional volume averaging/homogenization methods with the contribution of determining permeability heterogeneities of facies at each step of upscaling procedure and manipulating the data which is not proper to be averaged (approximately normally distributed) with the combination of Lorenz Plot to identify the flowing intervals. As a result, geometrical average of upscaled core plug permeability data is found to be approximately equal to the well test derived permeability for the goodly interpreted well tests. Carbonates are very heterogeneous and this exercise will also be instructive in understanding the heterogeneity for the guidance of reservoir models in such a system.