Implementation of K-epsilon turbulence models in a two dimensional parallel Navier-Stokes solver on hybrid grids


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Havacılık ve Uzay Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2014

Öğrenci: ONUR OZAN KALKAN

Danışman: İSMAİL HAKKI TUNCER

Özet:

In this thesis, the popular k-ε turbulence model is implemented on a parallel, 2-dimensional, explicit, density-based, finite volume based Navier-Stokes solver works on hybrid grids, HYP2D. Among the other versions available in the open literature, standard version of the k-ε turbulence mode is studied. Launder-Spalding and Chieng-Launder wall functions are adapted to the turbulence model in order to investigate the effects of the strong gradients in the vicinity of the wall on the turbulence. In order to include the low-Reynolds-number effects near the wall Abid’s and Abe-Kondoh-Nagano near wall models are also implemented. Flow over turbulent flat plate and RAE 2822 airfoil are studied for validation of the implementation. After the results show that the implementation is successful according to experimental data and other numerical solutions, NACA 0012 airfoil is simulated at different flow conditions and the effects of turbulence model on the results are discussed. The ability of simulating the turbulent flow with accuracy is acquired to HYP2D solver.