Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2003
Öğrenci: METİN MISIRDALI
Danışman: NURİ MERZİ
Özet:A completely satisfactory water distribution network should fulfill its basic requirements such as providing the expected quality and quantity of water with the desired residual pressures during its lifetime. A water distribution network should accommodate the abnormal conditions caused by failures. These types of failures can be classified into two groups; mechanical failures and hydraulic failures. Mechanical failure is caused due to malfunctioning of the network elements such as pipe breakage, power outage and pump failure. On the other hand, hydraulic failure, considers system failure due to distributed flow and pressure head which are inadequate at one or more demand points.This study deals with the calculation of the hydraulic system reliability of an existing water distribution network regarding the Modified Chandapillai model while calculating the partially satisfied nodes. A case study was carried out on a part of Ankara Water Distribution Network, N8-1. After the modeling of the network, skeletonization and determination of nodal service areas were carried out. The daily demand curves for the area were drawn using the data that were taken from SCADA of the water utility. The daily demand curves of different days were joined and one representative mean daily demand curve together with the standard deviation values was obtained. The friction coefficient values of the pipes and storage tank water elevation were taken as other uncertainty parameters for the model. Bao and Mays (1990) approach were carried together with the hydraulic network solver program prepared by Nohutcu (2002) based on Modified Chandapillai model. The sensitivity analysis for the effects of system characteristics and model assumptions were carried out to see the effects of the parameters on the calculations and to investigate the way of improving the hydraulic reliability of the network.