Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Türkiye
Tezin Onay Tarihi: 2016
Öğrenci: ÖZHAN GENÇ
Danışman: EMRE COŞKUN
Özet:In this thesis, we consider the existence problem of rank one and two stable Ulrich bundles on imprimitive Fano 3-folds obtained by blowing-up one of P^3, Q (smooth quadric in P^4), V3 (smooth cubic in P^4) or V4 (complete intersection of two quadrics in P^5) along a smooth irreducible curve. We prove that the only class which admits Ulrich line bundles is the one obtained by blowing up a genus 3, degree 6 curve in P^3. Also, we prove that there exist stable rank two Ulrich bundles with c1 = 3H on a generic member of this deformation class.