Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye
Tezin Onay Tarihi: 2010
Öğrenci: SALİM ÇALIŞKAN
Danışman: SAİM ÖZKAR
Özet:Among the new hydrogen storage materials, ammonia borane (AB) appears to be the most promising one as it has high hydrogen content, high stability, and being environmentally benign. Dehydrogenation of AB can be achieved via hydrolysis, thermolysis or methanolysis. Methanolysis of AB eliminates some drawbacks of other dehydrogenation reactions of AB. The use of colloidal and supported particles as more active catalyst than their bulky counterparts for the hydrolysis of AB implies that reducing the particle size can cause an increase in the catalytic activity as the fraction of the surface atoms increases by decreasing the particle size. Similarly, transition metal nanoclusters can be utilized as catalyst for the methanolysis of AB as well. For this purpose transition metal nanoclusters need to be stabilized to a certain extent. Actually in the catalytic application of transition metal nanoclusters one of the most important problems is the aggregation of nanoclusters into bulk metal, despite of using the best stabilizers. In this regards, the use of metal nanoclusters as catalysts in systems with confined void spaces such as inside mesoporous and microporous solids appears to be an efficient way of preventing aggregation. In this dissertation we report for the first time the use of intrazeolite rhodium(0) nanoclusters as a catalyst in the methanolysis of ammonia borane. Rhodium(0) nanoclusters could be generated in zeolite-Y by a two-step procedure: (i) incorporation of rhodium(III) cations into the zeolite-Y by ion-exchange, (ii) reduction of rhodium(III) ions within the zeolite cages by sodium borohydride in aqueous solution, followed by filtration and dehydration by heating to 550 °C under 10-4 Torr. Zeolite confined rhodium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by ICP-OES, XRD, SEM, EDX, HRTEM, XPS and N2 adsorption-desorption technique. The zeolite confined rhodium(0) nanoclusters are isolable, bottleable, redispersible and reusable. They are active catalyst in the methanolysis of ammonia-borane even at low temperatures. They provide exceptional catalytic activity with an average value of TOF = 380 h-1 and unprecedented lifetime with 74300 turnovers in the methanolysis of ammonia-borane at 25 ± 0.1 °C. The work reported here also includes the full experimental details of previously unavailable kinetic data to determine the rate law, and activation parameters (Ea, ΔH≠ and ΔS≠) for the catalytic methanolysis of ammonia-borane.