Design methods for planar and spatial deployable structures


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: GÖKHAN KİPER

Danışman: ERES SÖYLEMEZ

Özet:

This thesis study addresses the problem of overconstraint via introduction of conformal polyhedral linkages comprising revolute joints only and investigation of special geometric properties for the mobility of such overconstrained linkages. These linkages are of particular interest as deployable structures. First, planar case is issued and conditions for assembling irregular conformal polygonal linkages composed of regular and angulated scissor elements are derived. These planar assemblies are implemented into faces of polyhedral shapes and radially intersecting planes to obtain two different kind of polyhedral linkages. Rest of the thesis work relates to spatial linkages. Identical isosceles Bennett loops are assembled to obtain regular polygonal linkages and many such linkages are assembled to form polyhedral linkages. Then, Fulleroid-like linkages are presented. After these seemingly independent linkage types, Jitterbug-like linkages are introduced. Based on some observations on present linkages in the literature a definition for Jitterbug-like linkages is given first, and then a set of critical properties of these linkages are revealed. This special type of polyhedral linkages is further classified as being homothetic and non-homothetic, and geometric conditions to obtain mobile homothetic Jitterbug-like polyhedral linkages are investigated. Homohedral linkages, linkages with polyhedral supports with 3- and 4-valent vertices only, tangential polyhedral linkages are detailed as special cases and the degenerate case where all faces are coplanar is discussed. Two types of modifications on Jitterbug-like linkages are presented by addition of links on the faces and radial planes of Jitterbug-like linkages. Finally, a special class of Jitterbug-like linkages - modified Wren platforms are introduced as potential deployable structures.