Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2007
Tezin Dili: İngilizce
Öğrenci: Fadime Kara
Asıl Danışman (Eş Danışmanlı Tezler İçin): Faika Dilek Sanin
Eş Danışman: Güzin Candan Gültekin
Özet:Bioflocculation happens naturally and microorganisms aggregate into flocs during wastewater treatment. It is critical to understand the mechanisms of bioflocculation and its impact on the following solid/liquid separation process since seperation by settling is one of the key aspects that determine the efficiency and the overall economy of activated sludge systems. Bioflocculation occurs via extracellular polymeric substances (EPS) and cations by creating a matrix to hold various floc components together so the cations become an important part of the floc structure. The main objective of this study is to investigate the effects of monovalent cations specifically potassium and sodium (K and Na) on the bioflocculation, settleability and dewaterability of activated sludge. The particular aim is to grow the mixed culture microorganisms in the presence of specific cation so that the effect of cation on the stimulation of EPS production can be seen. In order to achieve this aim, semi-continuous reactors were separately operated at concentrations of 5, 10, and 20 meq/L of each cation with mixed culture bacteria and fed with synthetic feed medium representing influent to the activated sludge systems. Also, a control reactor at low cation dose was operated for each reactor set. The effective volume of the reactors was 2 L with 8 days of sludge residence time (SRT) and pH was kept at 7.7± 0.3. The activated sludge reactors were operated until the reactors reached steady state and then related analyses were conducted. It was found that addition of potassium and sodium ions at increasing concentrations resulted in increase in total polymer concentration. However, potassium ions promoted the synthesis of both polysaccharide and protein type polymers whereas sodium ions tended to stimulate production of protein type polymers and had an affinity to bind more protein within the floc structure. Sodium sludges had lower hydrophobicity and higher surface charges, so sodium ions led to deterioration in flocculation of sludges. Addition of both these ions decreased the dewaterability, sodium ions had more detrimental effect on dewaterability of sludges compared to potassium ions. The examination of data related to settleability showed that potassium ions led to no drastic deterioration in settling characteristics of the activated sludge but the addition of sodium ions deteriorated the settleability. In addition, it was seen that while the addition of potassium ions to the feed led to a decrease in viscosity, increase in sodium concentration correlated with an increase in viscosity. Finally, the comparison of chemical oxygen demand (COD) removal efficiency of these cations showed that sodium is more efficient in COD removal.