The finite element method solution of reaction-diffusion-advection equations in air pollution


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Enstitüsü, Türkiye

Tezin Onay Tarihi: 2008

Öğrenci: ÖNDER TÜRK

Danışman: MÜNEVVER TEZER

Özet:

We consider the reaction-diffusion-advection (RDA) equations resulting in air pollution mod- eling problems. We employ the finite element method (FEM) for solving the RDA equations in two dimensions. Linear triangular finite elements are used in the discretization of problem domains. The instabilities occuring in the solution when the standard Galerkin finite element method is used, in advection or reaction dominated cases, are eliminated by using an adap- tive stabilized finite element method. In transient problems the unconditionally stable Crank- Nicolson scheme is used for the temporal discretization. The stabilization is also applied for reaction or advection dominant case in the time dependent problems. It is found that the stabilization in FEM makes it possible to solve RDA problems for very small diffusivity constants. However, for transient RDA problems, although the stabilization improves the solution for the case of reaction or advection dominance, it is not that pronounced as in the steady problems. Numerical results are presented in terms of graphics for some test steady and unsteady RDA problems. Solution of an air pollution model problem is also provided.