Investigation of cell migration and proliferation in agarose based hydrogels for tissue engineering applications


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Enstitüsü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: ELİF VARDAR

Danışman: VASIF NEJAT HASIRCI

Özet:

Hydrogels are three dimensional, insoluble, porous and crosslinked polymer networks. Due to their high water content, they have great resemblance to natural tissues, and therefore, demonstrate high biocompatibility. The porous structure provides an aqueous environment for the cells and also allows influx of nutrients needed for cellular viability. In this study, a natural biodegradable material, agarose (Aga), was used and semi-interpenetrating networks (semi-IPN) were prepared with polymers having different charges, such as positively charged chitosan (Ch) and negatively charged alginate (Alg). Hydrogels were obtained by the thermal activation of agarose with the entrapment of Ch or Alg in the Aga hydrogel structures. Chemical composition of hydrogels were determined by ATR-FTIR examinations, mechanical properties of hydrogels were examined through compression tests, morphologies were confirmed by scanning electron microscopy (SEM) and confocal microscopy, thermal properties were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, swelling ratios, water contact angles and surface free energies (SFE) were determined. Cell proliferation and cell migration within these hydrogels were examined by using L929 fibroblast cell line. MTS assays were carried out to observe the cell proliferation on hydrogels. Confocal microscopy was used in order to examine the cell behavior such as cell attachment and cell migration towards the hydrogels. It was observed that addition of positively charged Ch into agarose increased the ultimate compressive strength (UCS), decreased elastic modulus (E), increased the thermal stability and hydrophobicity of the semi-IPN hydrogels. On the other hand, addition of negatively charged Alg into agarose decreased UCS, E, thermal stability and hydrophilicity. Cell-material interaction results showed that Aga hydrogels in tissue engineering applications was improved by adding different charged polyelectrolytes. Cell migration within Aga hydrogels was enhanced by adding Ch, and hindered by addition of Alg. Maximum cell proliferation and maximum penetration of the cells were obtained with the Ch/Aga hydrogels most probably due to attraction between the negatively charged cell surface and the positively charged Ch/Aga hydrogel surface. It was shown that cell interaction of agarose hydrogel scaffolds could be enhanced by introducing chitosan within the agarose hydrogels and obtained structures could be candidates for tissue engineering applications.