Development of new lead-free solders for electronics industry


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: ANIL KANTARCIOĞLU

Danışman: YUNUS EREN KALAY

Özet:

Joining of electronic components onto the circuit boards is done by soldering operation, during production of all electronic devices. In many countries, including Turkey, traditionally used tin-lead (Sn-Pb) solder alloys have been restricted to be used in consumer electronics appliances because of the toxic effects of lead (Pb) within these alloys. Tin-silver-copper (Sn-Ag-Cu) based alloys have been developed as the most promising candidate that can replace the Sn-Pb alloys. However, various problems have emerged with the increasing trend in use of Sn-Ag-Cu solder alloys in electronics industry, namely large intermetallic compound formation, low wettability and thermal shock resistance. Many researches have been done in the past decade to overcome these problems. The solutions are based on changing the undercooling of the solder alloy; which was determined to be done by either changing the composition of the solder alloy by micro-alloying or changing the cooling rate during soldering operation. In this thesis study Sn-3.5Ag-0.9Cu (wt. %) lead-free solder having the eutectic composition, was micro-alloyed with additions of aluminum (Al), iron (Fe) and titanium (Ti). Experimental results were compared with commercially available near-eutectic Sn-40Pb (wt. %) solder, a commercially available Sn-3.0Ag-0.5Cu (wt. %) solder and also eutectic Sn-3.5Ag.0.9Cu (wt. %) and near-eutectic Sn-3.7Ag-0.9Cu (wt. %) solders that were produced for this thesis study. In the first stage of the study, the effects of 0.05 wt. % of Al, Fe and Ti micro-alloying were investigated. When preliminary results of mechanical and thermal test were compared, Fe was found to make positive effect on shear strength and undercooling. Further research was carried out to establish a relationship between the Fe compositions and solder properties. Therefore, 0.01, 0.03, 0.07 and 0.1 wt. % Fe additions were also studied and results were reported. 0.01 wt. % and 0.07 wt. % Fe added solders were found to have a smaller undercooling, resulting with dispersed intermetallic compound (IMC) and thus has highest shear strength. Different cooling rates; 0.017, 0.17 and 1.7 °C/sec were applied to solder-copper joints and microstructures were investigated. Large IMC-free microstructure was achieved by 0.01 wt. % Fe micro-alloyed solder, which was cooled with 1.7 °C/sec rate. Wetting of copper substrate was found to be improved by additions of Al, Fe and Ti compared to alloy with eutectic composition of Sn-Ag-Cu alloy. Selected SAC+X alloys have been subjected to thermal shock experiments for crack formation analysis on the copper substrate-solder joints. The results showed that SAC+0.05Al solder has the higher thermal shock resistance, which no cracks were observed after 1500 cycles of thermal shock. In order to understand the insights of SAC performance, some of the lead-free solders were applied onto printed circuit boards for thermal shock resistance test. These results have indicate that the cracking may occur after thermal shock cycles due to process conditions of soldering operation (i.e. cooing rate), independent of the solder alloy composition.