Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2006
Öğrenci: TALİP KÜÇÜKKILIÇ
Danışman: MEVLÜDE GÜLBİN DURAL ÜNVER
Özet:In Inverse Synthetic Aperture Radar (ISAR) systems the motion of the target can be classified in two main categories: Translational Motion and Rotational Motion. A small degree of rotational motion is required in order to generate the synthetic aperture of the ISAR systems. On the other hand, the remaining part of the target’s motion, that is any degree of translational motion and the large degree of rotational motion, degrades ISAR image quality. Motion compensation techniques focus on eliminating the effect of the targets’ motion on the ISAR images. In this thesis, ISAR image generation is discussed using both Conventional Fourier Based and Time-Frequency Based techniques. Standard translational motion compensation steps, Range and Doppler Tracking, are examined. Cross-correlation method and Dominant Scatterer Algorithm are employed for Range and Doppler tracking purposes, respectively. Finally, Time-Frequency based motion compensation is studied and compared with the conventional techniques. All of the motion compensation steps are examined using the simulated data. Stepped frequency waveforms are used in order to generate the required data of the simulations. Not only successful results, but also worst case examinations and lack of algorithms are also discussed with the examples.