Sabit kanatlı bir İHA'nın otomatik iniş sistemi için kontrol algoritması tasarımı.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Havacılık ve Uzay Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2007

Tezin Dili: İngilizce

Öğrenci: Volkan Kargın

Danışman: İLKAY YAVRUCUK

Özet:

This thesis concerns with the design and development of automatic flight controller strategies for the autonomous landing of fixed wing unmanned aircraft subject to severe environmental conditions. The Tactical Unmanned Aerial Vehicle (TUAV) designed at the Middle East Technical University (METU) is used as the subject platform. In the first part of this thesis, a dynamic model of the TUAV is developed in FORTRAN environment. The dynamic model is used to establish the stability characteristics of the TUAV. The simulation model also incorporates ground reaction and atmospheric models. Based on this model, the landing trajectory that provides shortest landing distance and smallest approach time is determined. Then, an automatic flight control system is designed for the autonomous landing of the TUAV. The controller uses a model inversion approach based on the dynamic model characteristics. Feed forward and mixing terms are added to increase performance of the autopilot. Landing strategies are developed under adverse atmospheric conditions and performance of three different classical controllers are compared. Finally, simulation results are presented to demonstrate the effectiveness of the design. Simulation cases include landing under crosswind, head wind, tail wind, wind shear and turbulence.