The development and hardware implementation of a dynamically reconfigurable and area optimized cyclic redundancy check architecture


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2013

Öğrenci: ÖZCAN YURT

Danışman: ŞENAN ECE SCHMİDT

Özet:

The Cyclic Redundancy Check (CRC) calculation for data communication protocols is implemented by hardware calculators in several systems due to increasing throughput requirements of data communication protocols. Furthermore CRC is employed in many small scale embedded systems with different types of data communication interfaces that are implemented on FPGA. Resource utilization of these systems is frequently a critical parameter with regards to cost. In many cases, limited logic units of an FPGA have to be used very carefully to fit the design into that platform. In this thesis, we present DAROC-Dynamically Reconfigurable and ARea Optimized CRC, which is a run-time reconfigurable and area-minimized CRC calculator. The ability of reconfiguration enables DAROC calculating different CRCs for several standards with a single instance of implementation. DAROC reaches the throughput of 705 Mbps that is sufficient for the target embedded systems with less resource consumption compared to the previous reconfigurable CRC implementations.