Yeni bir öncülle zirkonyum tungstat sentezi ve nanolif üretimi için çalışmalar.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2009

Tezin Dili: İngilizce

Öğrenci: Berker Özerciyes

Danışman: GÜNGÖR GÜNDÜZ

Özet:

Zirconium tungstate (ZrW2O8) is a ceramic that shows large isotropic negative thermal expansion over a wide range of temperature. This unique property makes it an interesting candidate for applications where thermal expansion mismatch between components constitutes a problem. ZrW2O8 is typically produced by solid-state reaction between zirconium oxide and tungsten oxide at 1200oC. In some studies, ZrW2O8 precursors have been produced from relatively expensive zirconium and tungsten sources. While the origin of negative thermal expansion has been the main focus in the majority of publications, production of particles with controlled size, distribution and morphology has not been studied extensively. Electrospinning is a simple technique for producing micron/nano sized fibers from polymer solutions. The method can also be used for producing ceramic or polymer/ceramic composite fibers by electrospinning of a mixture of ceramic precursors or ceramic nanoparticles with suitable polymers. Ceramic precursors could be synthesized either by sol-gel or chemical precipitation routes before mixing them with polymer solutions and a final burnout step would be needed, in case the fiber is desired to be composed of the ceramic phase. Electrospinning technique has not been employed to the production of ZrW2O8 ceramic fibers. In this study a novel precursor for ZrW2O8 from relatively cheaper and abundant starting chemicals, namely zirconium acetate and tungstic acid were used. Experimental details of development of the precursor are presented with a discussion on the effects of solution parameters on the phase purity of the fired product. Besides the solution parameters investigated (i.e. solubility of tungstic acid, adjustment of the stoichiometry, final pH of the solution, ageing time), evolution of the heat treatment protocol was used in the production of phase pure ZrW2O8. Second, the suitability of the developed precursor for producing ZrW2O8 in fiber form was investigated. Preliminary studies involved the adjustment of the viscosity of precursor solution for electrospinning with poly (vinyl alcohol) (PVA). Optimum PVA concentration leading to bead-free nanofiber mats and a method to increase the fiber production rate were reported. The characterization of the products was achieved by SEM and XRD.