Roketiç akış uygulamaları için üç boyutlu sıkıştırılabilir Navier-Stokes çözücüsü.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2007

Tezin Dili: İngilizce

Öğrenci: Korhan Coşkun

Danışman: MEHMET HALUK AKSEL

Özet:

A three dimensional, Navier-Stokes finite volume flow solver which uses Roe’s upwind flux differencing scheme for spatial and Runge-Kutta explicit multi-stage time stepping scheme and implicit Lower-Upper Symmetric Gauss Seidel (LU-SGS) iteration scheme for temporal discretization on unstructured and hybrid meshes is developed for steady rocket internal viscous flow applications. The spatial accuracy of the solver can be selected as first or second order. Second order accuracy is achieved by piecewise linear reconstruction. Gradients of flow variables required for piecewise linear reconstruction are calculated with both Green-Gauss and Least-Squares approaches. The solver developed is first verified against the three-dimensional viscous laminar flow over flat plate. Then the implicit time stepping algorithms are compared against two rocket motor internal flow problems. Although the solver is intended for internal flows, a test case involving flow over an airfoil is also given. As the last test case, supersonic vortex flow between concentric circular arcs is selected.