Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2014
Öğrenci: AYŞE İLDEN AK
Danışman: MEHMET KEMAL LEBLEBİCİOĞLU
Özet:In this thesis, studies for the development of a landing autopilot for the UAV (Unmanned Aerial Vehicle), Pioneer RQ2 are presented. Firstly, 6 DOF (degree of freedom) nonlinear model of Pioneer is implemented in Matlab-Simulink based on FDC (Flight Dynamics and Control) Toolbox. Then, in accordance with steady-state wings level flight condition, trim points are found for different airspeed values, constant height and zero flight path angle. The nonlinear model of Pioneer is linearized at these trim points using Matlab-Linearization Toolbox. Linear systems responses are verified to ensure that aircraft is well trimmed. According to the specifications and predefined flying qualities, stability of the linear models are searched. For all linear models of Pioneer, in order to control altitude, velocity and direction of the aircraft, controllers are designed with classical (PID) and modern control methods (LQT). These controllers are applied to the nonlinear system by using gain scheduling method with necessary modifications. Optimal landing paths are generated inside of the landing cone. Then cross track guidance and lateral track error guidance methods are added to the system to manipulate the lateral position of the aircraft. Controllers and guidance methods are tested in the existence of wind.