Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2009
Öğrenci: KEZBAN DEMİRTAŞ
Danışman: FEHİME NİHAN ÇİÇEKLİ
Özet:In this thesis, we make automatic video categorization and summarization by using subtitles of videos. We propose two methods for video categorization. The first method makes unsupervised categorization by applying natural language processing techniques on video subtitles and uses the WordNet lexical database and WordNet domains. The method starts with text preprocessing. Then a keyword extraction algorithm and a word sense disambiguation method are applied. The WordNet domains that correspond to the correct senses of keywords are extracted. Video is assigned a category label based on the extracted domains. The second method has the same steps for extracting WordNet domains of video but makes categorization by using a learning module. Experiments with documentary videos give promising results in discovering the correct categories of videos. Video summarization algorithms present condensed versions of a full length video by identifying the most significant parts of the video. We propose a video summarization method using the subtitles of videos and text summarization techniques. We identify significant sentences in the subtitles of a video by using text summarization techniques and then we compose a video summary by finding the video parts corresponding to these summary sentences.