Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2012
Öğrenci: HAYRİ YİĞİT AKARGÜN
Danışman: CÜNEYT SERT
Özet:Least-squares finite element method (LSFEM) is employed to simulate 2-D and axisymmetric flows governed by the compressible Euler equations. Least-squares formulation brings many advantages over classical Galerkin finite element methods. For non-self-adjoint systems, LSFEM result in symmetric positive-definite matrices which can be solved efficiently by iterative methods. Additionally, with a unified formulation it can work in all flight regimes from subsonic to supersonic. Another advantage is that, the method does not require artificial viscosity since it is naturally diffusive which also appears as a difficulty for sharply resolving high gradients in the flow field such as shock waves. This problem is dealt by employing adaptive mesh refinement (AMR) on triangular meshes. LSFEM with AMR technique is numerically tested with various flow problems and good agreement with the available data in literature is seen.