Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2011
Tezin Dili: İngilizce
Öğrenci: Hüseyin Anıl Salman
Danışman: RAİF ORHAN YILDIRIM
Özet:Impact of rain drops at relatively high velocities, which is known as rain erosion, causes severe damages on various materials. Every material can withstand the rain erosion up to a specific impact velocity. However, this damage is critical for optical windows which are very important components for Electro-Optical (EO) systems such as thermal camera. Even a small scratch may affect the transmission capability of the optical window adversely and leads to some functional problems in the device due to insufficient transmitted data. Since it has a vital effect on the EO systems, the rain erosion is needed to be investigated on the special optical windows, particularly for determining the velocity that a damage initiates. In this study, the rain erosion is investigated on germanium which is a kind of optical window, by means of numerical simulations in LS-DYNA. Damage Threshold Velocity (DTV) is examined for two different water shapes (which are spherical water drop and water jet) within a velocity range between 100 and 250 m/s. Both single and multiple impact cases are considered for both water shapes up to ten consecutive collisions. By using the results, the “DTV versus number of impact curves” are obtained in order to understand the amount of damage with respect to both single and multiple impacts. Results are compared with both literature and the experimental data within the scope of DTV and shape of the damage. In the numerical simulations, ALE (Arbitrary Lagrangian Eulerian) method is used for modelling water. “JOHNSON-HOLMQUIST-CERAMICS (JH-2)” which is recommended for both ceramics and glass applications is used as the material model for Germanium. JH-2 is a complete material model which contains damage effects, failure criteria, and Equation of State (EOS) all together. Among the material models available in the library of LS-DYNA, “MAT-NULL + EOS-GRUNEISEN” is used for water.