Isıl enerji depolamalı parabolik oluklu kolektörlerin modellenmesi, zamana bağlı benzetimi ve parametrik çalışması.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2014

Tezin Dili: İngilizce

Öğrenci: Tufan Akba

Eş Danışman: DEREK KEITH BAKER, ALMILA GÜVENÇ YAZICIOĞLU

Özet:

In this thesis, a mathematical model of a parabolic trough collector field with a two-tank molten salt thermal energy storage is developed. The model is built in TRNSYS and by using MatLab, novel valve and thermal energy storage control algorithms are implemented. The model is sensitive to transient states inside the components and variations in weather and demand. Optimum parabolic trough collector length is determined for different insolation values to show the relation between direct normal insolation and collector string length. The mathematical model is used in an economic model, which contains initial investment costs of the parabolic trough collector field and thermal energy storage costs only. Depending on the economic model, different sizes of plants are created at fixed initial investment costs by changing collector field area and storage size in the mathematical model. A parametric study is done by using economic model data and by simulating the mathematical model at various initial investment costs, two different locations in Turkey, and four different load profiles. As result of the parametric study, maximum solar fraction cases are selected and a generalized trend is observed. Effect of thermal energy storage on solar fraction is discussed and the change in thermal energy storage with optimum plant size is investigated. After an optimum investment, linear increment behavior of solar fraction is disappears and increases asymptotically by increasing the plant and/or storage size. Above this limit, hybridizing with other energy sources are advised. Later in the thesis, significance of load profile is emphasized, which should be one of the major design parameters for solar powered energy systems.