Synthesis of mesoporous catalysts and their performance in pyrolysis of polyethylene


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: BUĞÇE AYDEMİR

Danışman: NAİME ASLI SEZGİ

Özet:

Plastic materials are widely used throughout the world due to their low prices and easy processing methods. A serious problem of environmental pollution is brought with the widespread use of these materials due to their non-biodegradabilty. For this reason, plastic materials are degraded into lower molecular weight liquid and gaseous products which are potential raw materials and fuels for petrochemical industry. The use of catalysts enhances the formation of more valuable hydrocarbons at lower reaction temperatures and residence times. In this study, aluminum containing MCM-41 and tungstophosphoric acid (TPA) loaded SBA-15 materials were synthesized by impregnation of Al and TPA into hydrothermally synthesized MCM-41 and SBA-15, respectively to be used in catalytic degradation of polyethylene. Al was incorporated into MCM-41 framework with different Al/Si ratios using aluminum triisopropylate as the aluminum source and TPA was incorporated to the porous framework of SBA-15 with different W/Si ratios, using tungstophosphoric acid hydrate as the acid source. From XRD analysis, it was observed that introducing acidic compounds did not cause deformations in the regularity and by EDS analysis, it was found out that at lower loadings, acidic compounds were introduced more effectively for MCM-41 materials. Nitrogen adsorption-desorption isotherms showed that the synthesized materials exhibited type IV isotherms. SEM and TEM pictures showed the hexagonal regularly ordered structure of SBA-15 and MCM-41 materials. FTIR analysis of the pyridine adsorbed synthesized materials revealed the existence of Lewis and Brønsted acid sites in the synthesized materials. From TGA analysis it was observed that aluminum impregnated MCM-41 samples reduced the temperature of the degradation reaction significantly and TPA loaded SBA-15 samples reduced activation energy of the reaction effectively. In the degradation reaction system, non-catalytic and catalytic degradation experiments of polyethylene were performed. In non-catalytic degradation and catalytic degradation reactions carried out using aluminum containing MCM-41 materials, selectivity of C3 and C4 hydrocarbon gases was high and in catalytic degradation reactions carried out using TPA impregnated SBA-15 materials, selectivity of ethylene was high. In the liquid analysis of non-catalytic degradation reactions, it was observed that the product distribution was mainly composed of hydrocarbons greater than C18. The use of aluminum loaded MCM-41 and TPA loaded SBA-15 materials resulted in a liquid product distribution in the range of C5-C14, which is the hydrocarbon range of gasoline fuel.