Bridgman yöntemi ile büyütülen N- ve si-ekilmiş Gase tek kristallerinin yapısal elektriksel ve optik karakterizasyonu


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2003

Tezin Dili: İngilizce

Öğrenci: Orhan Karabulut

Eş Danışman: MEHMET PARLAK, BÜLENT GÜLTEKİN AKINOĞLU

Özet:

Single crystals of GaSe were grown from the melt using 3-zone vertical Bridgman-Stockbarger system. In order to determine the doping effect, nitrogen and silicon ions were implanted to the grown crystals. Surface morphology and stoichiometry were examined using scanning electron microscope equipped with EDAX and structure properties were examined by x-ray diffraction technique. It was observed that the resulting ingot was stoichiometric and the structure was hexagonal. To identify the effects of ion implantation on the physical properties of the samples depending on annealing; electrical conductivity, hall measurements, current-voltage characteristics, photoconductivity and photoluminescence measurements were carried out in the temperature range of 100-450 K. Also spectral transmission measurements were carried out for all the samples at room temperature. It was observed that both N- and Si- implantation followed by annealing process decreased the resisitivity values from 107 to 103 (?-cm). Temperature dependent conductivity measurements were analyzed to deduce the dominant transport mechanisms. The trap levels were also investigated by the space charge limited currents (SCLC) measurements. The temperature dependence of hole concentrations showed that as-grown, N- and Si-implanted samples behave as partially compensated p-type semiconductors. Using suitable statistical method, transport parameters such as acceptor level, donor and acceptor concentrations were extracted from the experimental data. Trapping centers and recombination mechanisms were determined from the temperature dependent photoconductivity measurements by investigating the relation between photocurrent and illumination intensity. N- and Si- implantation effects on GaSe were also examined by spectral photoconductivity and transmission measurements. And lastly, radiative recombination mechanisms in