Correlation of deformation demands with ground motion intensity


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2007

Öğrenci: HAZIM YILMAZ

Danışman: AHMET YAKUT

Özet:

A comprehensive study has been carried out to investigate the correlation between deformation demands of frame structures and a number of widely cited ground motion intensity parameters. Nonlinear response history analyses of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) models derived from sixteen reinforced concrete frames were carried out under a set of eighty ground motion records. The frames were selected to portray features of typical low-to-mid rise reinforced concrete structures. The records contained in the ground motion database were compiled from the recorded ground motions with the intention to possess a broad range of amplitude, frequency content and duration characteristics that shift selected frames into various degrees of elastic as well as inelastic response. Maximum deformation demands of SDOF models and the maximum interstory drift ratios of MDOF models, response parameters of interest, were computed employing 1280 nonlinear response history analyses. Computed response parameters were compared with the ground motion intensity parameters employed and correlation between them were quantified through coefficients of correlation and determination. The results revealed that the spectral intensity parameters including spectral amplitudes over a range of period covering the frame structures have the strongest correlation and present better relationship with the deformation demands compared to the intensity parameters that are based on a single amplitude such as PGA, PGV and spectral acceleration. Besides analytical study, association of ground motion parameters with observed damage has been investigated and no clear trend has been observed between the performance of the buildings and the seismic indices.