Kuvarz içeren kayaların tek eksenli yükleme sırasındaki elektrik potansiyel davranışları.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Tezin Dili: İngilizce

Öğrenci: Hikmet Sinan İnal

Danışman: HASAN AYDIN BİLGİN

Özet:

The electric potential changes under uniaxial loading in some minerals and rocks have long been recognized. To daylight the electrical response of some minerals and rocks against applied stress, both theoretical studies and laboratory experiments are conducted. Some theories are also proposed by different researchers, in order to explain the electric potential variations. However, the mechanisms leading to electrical potential generation have not been fully explained yet. In the explanation of electric potential changes observed in rocks, type of the observed rock and the rock forming minerals in the rock fabric play an important role. One theory is based on the fundamentals of piezoelectricity only. However the relation between the stress state and the electric generation is not fully understood. This thesis aims to make a further contribution to the studies on understanding the electric potential change in rocks, containing quartz, which is a common piezoelectric mineral, under uniaxial loading conditions. Three types of rocks, namely quartz-sandstone, granite and granodiorite, are tested, and the stress and electric potential (EP) variations are recorded during the uniaxial loading experiments in a continuous manner. The experiments are conducted at three different loading rates, in order to investigate the effect of loading rate on the electrification mechanism. Also step loading experiments are conducted. Results indicated that, application of uniaxial stress creates a clear change in the EP responses of three quartz bearing rock types. The possible relationships between the EP generation and the level of applied stress are investigated based on the initial and final potential values (EPinitial, EPfinal), the potential just before the time of failure (EPUCS), the spike-like potential jump at the time of failure (?V), which are derived from the recorded data of