Regresyon tekniklerinin Monte Carlo simulasyonu aracılığıyla karşılaştırılması


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, İstatistik Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Tezin Dili: İngilizce

Öğrenci: Oya Can Mutan

Danışman: HÜSEYİN ÖZTAŞ AYHAN

Özet:

The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolute deviations (LAD), Winsorized least squares, least trimmed squares (LTS), Theil and weighted Theil are compared via computer simulation. In order to evaluate the estimator performance, mean, variance, bias, mean square error (MSE) and relative mean square error (RMSE) are computed.