Quality of service aware dynamic admission control in IEEE 802.16jnon-transparent relay networks


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: EDA KILIÇ

Danışman: CEVAT ŞENER

Özet:

Today, telecommunication is improving rapidly. People are online anywhere anytime. Due to increasing demand in communication, wireless technologies are progressing quickly trying to provide more services in a wide range. In order to address mobility and connectivity requirements of users in wide areas, Worldwide Interoperability for Microwave Access (Wimax) has been introduced as a forth generation telecommunication technology. Wimax, which is also called Metropolitan Area Network (MAN), is based on IEEE 802.16 standard where a Base Station (BS) provides last mile broadband wireless access to the end users known as Mobile Stations (MS). However, in places where high constructions exist, the signal rate between MS and BS decreases or even the signal can be lost completely due to shadow fading. As a response to this issue, recently an intermediate node specification, namely Relay Station, has been defined in IEEE 802.16j standard for relaying, which provides both throughput enhancement and coverage extension. However, this update has introduced a new problem; call admission control in non-transparent relay networks that support coverage extension. In this thesis, a Quality of Service (QoS) aware dynamic admission control algorithm for IEEE 802.16j non-transparent relay networks is introduced. Our objectives are admitting more service flows, utilizing the bandwidth, giving individual control to each relay station (RS) on call acceptance and rejection, and finally not affecting ongoing service flow quality in an RS due to the dense population of service flows in other RSs. The simulation results show that the proposed algorithm outperforms the other existing call admission control algorithms. Moreover, this algorithm can be interpreted as pioneer call admission control algorithm in IEEE 802.16j non-transparent networks.