Powder metallurgy of high density W-Ni-Cu alloys


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2006

Öğrenci: NECMETTİN KAAN ÇALIŞKAN

Danışman: BİLGEHAN ÖGEL

Özet:

In the present study; the effects of the powder metallurgical parameters such as the mixing method, compaction pressure, initial tungsten (W) particle size, composition, sintering temperature and sintering time on the sintering behavior of selected high density W-Ni-Cu alloys were investigated. The alloys were produced through conventional powder metallurgy route of mixing, cold compaction and sintering. The total solute (Ni-Cu) content in the produced alloys was kept constant at 10 wt%, while the copper concentration of the solutes was varied from 2.5 wt% to 10 wt%. Mainly liquid phase sintering method was applied in the production of the alloys. The results of the study were based on the density measurements, microstructural characterizations including optical and scanning electron microscopy and mechanical characterizations including hardness measurements. The results showed that the nature of the mixing method applied in the preparation of the powder mixtures has a considerable effect on the final sintered state of W-Ni-Cu alloys. Within the experimental limits of the study, the compaction v pressure and initial W particle size did not seem to affect the densification behavior. It was found that the sintering behavior of W-Ni-Cu alloys investigated in this study was essentially dominated by the Ni content in the alloy and the sintering temperature. A high degree of densification was observed in these alloys with an increase in the Ni content and sintering temperature which was suggested to be due to an increase in the solubility and diffusivity of W in the binder matrix phase with an increase in these parameters, leading to an increase in the overall sintering kinetics. Based on the results obtained in the present study, a model explaining the kinetics of the diffusional processes governing the densification and coarsening behavior of W-Ni-Cu alloys was proposed.