Alandaki değişimlere uyum sağlayarak karma tavsiye sistemlerinin doğruluğunun arttırılması.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Tezin Dili: İngilizce

Öğrenci: Fatih Aksel

Danışman: AYŞE NUR BİRTÜRK

Özet:

Traditional hybrid recommender systems typically follow a manually created fixed prediction strategy in their decision making process. Experts usually design these static strategies as fixed combinations of different techniques. However, people's tastes and desires are temporary and they gradually evolve. Moreover, each domain has unique characteristics, trends and unique user interests. Recent research has mostly focused on static hybridization schemes which do not change at runtime. In this thesis work, we describe an adaptive hybrid recommender system, called AdaRec that modifies its attached prediction strategy at runtime according to the performance of prediction techniques (user feedbacks). Our approach to this problem is to use adaptive prediction strategies. Experiment results with datasets show that our system outperforms naive hybrid recommender.