Birincil dizi veri temelli protein hücreiçi yer belirleme tahmini


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2003

Tezin Dili: İngilizce

Öğrenci: Mert Özarar

Danışman: MEHMET VOLKAN ATALAY

Özet:

Subcellular localization is crucial for determining the functions of proteins. A system called prediction of protein subcellular localization (P2SL) that predicts the subcellular localization of proteins in eukaryotic organisms based on the amino acid content of primary sequences using amino acid order is designed. The approach for prediction is to nd the most frequent motifs for each protein in a given class based on clustering via self organizing maps and then to use these most frequent motifs as features for classication by the help of multi layer perceptrons. This approach allows a classication independent of the length of the sequence. In addition to these, the use of a new encoding scheme is described for the amino acids that conserves biological function based on point of accepted mutations (PAM) substitution matrix. The statistical test results of the system is presented on a four class problem. P2SL achieves slightly higher prediction accuracy than the similar studies.