Korteweg de vries türündeki denklemler için enerjiyi koruyan yöntemler.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2011

Tezin Dili: İngilizce

Öğrenci: Görkem Şimşek

Danışman: BÜLENT KARASÖZEN

Özet:

Two well-known types of water waves are shallow water waves and the solitary waves. The former waves are those waves which have larger wavelength than the local water depth and the latter waves are used for the ones which retain their shape and speed after colliding with each other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which are widely used in many branches of physics and engineering. These equations are nonlinear long waves and mathematically represented by partial differential equations (PDEs). For solving the KdV and KdV-type equations, several numerical methods were developed in the recent years which preserve their geometric structure, i.e. the Hamiltonian form, symplecticity and the integrals. All these methods are classified as symplectic and multisymplectic integrators. They produce stable solutions in long term integration, but they do not preserve the Hamiltonian and the symplectic structure at the same time. This thesis concerns the application of energy preserving average vector field integrator(AVF) to nonlinear Hamiltonian partial differential equations (PDEs) in canonical and non-canonical forms. Among the PDEs, Korteweg de Vries (KdV) equation, modified KdV equation, the Ito’s system and the KdV-KdV systems are discetrized in space by preserving the skew-symmetry of the Hamiltonian structure. The resulting ordinary differential equations (ODEs) are solved with the AVF method. Numerical examples confirm that the energy is preserved in long term integration and the other integrals are well preserved too. Soliton and traveling wave solutions for the KdV type equations are accurate as those solved by other methods. The preservation of the dispersive properties of the AVF method is also shown for each PDE.