Bakır ftalosiyanin çöktürülmüş mika titan pigment sentezi ve özelliklerinin belirlenmesi.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2010

Tezin Dili: İngilizce

Öğrenci: Berna Burcu Topuz

Danışman: GÜNGÖR GÜNDÜZ

Özet:

In the present work, anatase and rutile titanium dioxide (TiO2) coated lustrous mica pigments were prepared by heterogeneous nucleation method. Anatase-rutile phase transformation of the TiO2 on mica substrate was achieved by coating very thin layers of tin (IV) oxide on mica surfaces prior to TiO2 deposition. Muscovite mica, which was used in the experiments was sieved, pre-treated with sodium bicarbonate and decantated before coating process. The surface morphology of mica titania pigments and anatase-rutile phase transformation were investigated by SEM and XRD analyse, respectively. Also, microwave-assisted synthesis of copper phthalocyanine and tetracarboxamide copper phthalocyanine pigments were carried out with phthalic anhydride and trimellitic anhydride precursors, respectively. Molecular structures of these pigments were confirmed by FT-IR and UV-visible spectroscopy analyse. Furthermore, combination pigments were obtained by the process of deposition of copper phthalocyanine pigments on mica-titania pigment substrate in dimethyl formamide solvent. FT-IR analysis and XRD analyse were performed to observe the transformations in the crystal forms of copper phthalocyanines on the substrate. The surface morphologies of copper phthalocyanines on the mica titania pigments were investigated by SEM analysis. Varying amounts of copper phthalocyanines were deposited on the mica surfaces, and nitrogen elemental analysis was performed to determine the amount of copper phthalocyanines. The resulting pigments were incorporated into alkyd based resin to prepare paint samples. L*a*b* values, gloss property, and hardness of the paint samples were determined by color measuring device, gloss meter and hardness measuring device, respectively. The resulting combination pigments obtained in this study showed improved luster, hue, and color intensity. Furthermore, in literature it was reported that these pigments have very high bleed resistance. This can be attributed to large macromolecular structure of copper phthalocyanine on the surface of mica titania pigment that prevents bleeding of the pigment from the paint. Moreover, the paint samples obtained from combination pigments showed higher hardness with respect to the paint sample of the mica titania pigment.