Yan jetlerin füze aerodinamiği açısından sayısal olarak incelenmesi.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Tezin Dili: İngilizce

Öğrenci: Ekin Ağsarlıoğlu

Danışman: KAHRAMAN ALBAYRAK

Özet:

In this thesis, effects of sonic lateral jets on aerodynamics of missiles and missilelike geometries are investigated numerically by commercial Computational Fluid Dynamics (CFD) software FLUENT. The study consists of two parts. In the first part, two generic missile-like geometries with lateral jets, of which experimental data are available in literature, are analyzed by the software for validation studies. As the result of this study, experimental data and CFD results are in good agreement with each other in spite of some discrepancies. Also a turbulence model study is conducted by one of test models. It is also found out that k-ε turbulence model is the most suitable model for this kind of problems in terms of accuracy and ease of convergence. In the second part of the thesis, parametric studies are conducted on a generic supersonic missile, NASA TCM, to see the effect of jet parameters on missile and component force and moments in pitch plane. Variable parameters are jet location, jet mass flow rate and angle of attack. As a result, it was found out that downstream influence zone of jet exit is more than the upstream influence zone. Normal force occurring by the interaction of the free stream and jet plume are amplified whenever the jet exit is located between lifting surfaces. Greater pitching moments are obtained when the jet exit moment arm with respect to moment reference center or jet mass flow rate is increased.