Rasgele görüntülerde ilgi noktası eşleme.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Tezin Dili: İngilizce

Öğrenci: İlker Bayram

Danışman: ABDULLAH AYDIN ALATAN

Özet:

Making a computer ءsee̕ is certainly one of the greatest challanges for today. Apart from possible applications, the solution may also shed light or at least give some idea on how, actually, the biological vision works. Many problems faced en route to successful algorithms require finding corresponding tokens in different views, which is termed the correspondence problem. For instance, given two images of the same scene from different views, if the camera positions and their internal parameters are known, it is possible to obtain the 3-Dimensional coordinates of a point in space, relative to the cameras, if the same point may be located in both images. Interestingly, the camera positions and internal parameters may be extracted solely from the images if a sufficient number of corresponding tokens can be found. In this sense, two subproblems, as the choice of the tokens and how to match these tokens, are examined. Due to the arbitrariness of the image pairs, invariant schemes for extracting and matching interest points, which were taken as the tokens to be matched, are utilised. In order to appreciate the ideas of the mentioned schemes, topics as scale-space, rotational and affine invariants are introduced. The geometry of the problem is briefly reviewed and the epipolar constraint is imposed using statistical outlier rejection methods. Despite the satisfactory matching performance of simple correlation-based matching schemes on small-baseline pairs, the simulation results show the improvements when the mentioned invariants are used on the cases for which they are strictly necessary.