Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Türkiye
Tezin Onay Tarihi: 2017
Öğrenci: MERVE YAĞMUR YARDIMCI
Danışman: ALPAN BEK
Özet:Drying a liquid (e.g. water) drop containing uniformly dispersed microscopic particles results in the particles’ migration towards the edges of the drop; after the drop evaporates the suspended particles remain concentrated around the original drop edge. This so-called “coffee-ring” effect does not depend on the nature of the solvent or the solute; thus it is ubiquitous in nature and challenging to avoid. However, in many applications such as inkjet printing, coating and many other biological processes, there is need to suppress and control the coffee-ring effect due to the requirement of uniform deposition of the suspended particles. Such approaches include changing the shape of the particulate suspension, using acoustic waves, or adding hydrosoluble polymer during the evaporation. In this work, we investigate the evaporation of liquid droplets containing passive and active particles under random optical potentials. In particular, we experimentally show that while drops of a suspension of 3 µm diameter polystyrene particles show typical coffee-ring when no opticalpotentials are applied, they form uniform distribution, suppressing the coffee-ring formation when a random optical potential is present.