Sustainability of high-rise buildings:Energy consumption by service core configuration


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mimarlık Fakültesi, Mimarlık Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: İLKAY GÜRYAY

Danışman: MEHMET HALİS GÜNEL

Özet:

The concept of 'sustainability' came into question during the last few decades world-wide. As one of the main source of carbon emission, construction industry is also affected by this movement. High-rise buildings which became proliferative components of construction industry dominate today's urban centers. Although they are defended as being inherently energy efficient by some people, specially designed sustainable high-rise building examples emerged after the sustainability movement all over the world. This dissertation examines the role of the service core configuration on the sustainability of high-rise buildings. In this context, the effect of different core types and locations on the energy consumption of high-buildings is evaluated. For this respect, sixteen alternative configuration models with central, end and split core types are determined as the representative of possible design choices. The alternatives share the same height, net and gross floor area, floor efficiency, materials, internal gains, etc. They just vary in type and location of the service core and orientation of the building mass. Energy consumptions of the sixteen models are tested with eQUEST, a thermal simulation program, by using the climatic data of Istanbul. The simulation is conducted according to two air conditioning scenarios for office and core zones. For both of the scenarios, split core alternatives are found as the most energy efficient configurations regardless of the core location and building orientation. Moreover, it is observed that while the end core alternatives giving average values, central core configurations have the highest energy consumption results, as predicted.