Development of control allocation methods for satellite attitude control

Thesis Type: Post Graduate

Institution Of The Thesis: Orta Doğu Teknik Üniversitesi, Faculty of Engineering, Department of Aerospace Engineering, Turkey

Approval Date: 2010




This thesis addresses the attitude control of satellites with similar and dissimilar actuators and control allocation methods on maneuvering. In addition, the control moment gyro (CMG) steering with gyroscopes having limited gimbal angle travel is also addressed. Full Momentum envelopes for a cluster of four CMG's are obtained in a pyramid type mounting arrangement. The envelopes when gimbal travel is limited to plus-minus 90 degree are also obtained. The steering simulations using Moore Penrose (MP) pseudo inverse as well as blended inverse are presented and success of the pre planned blended inverse steering in avoiding gimbal angle limits is demonstrated through satellite slew maneuver simulations, showing the completion of the maneuver without violating gimbal angle travel restrictions. Dissimilar actuators, CMG and magnetic torquers are used as an approach of overactuated system. Steering simulations are carried out using different steering laws for constant torque and desired satellite slew maneuver scenarios. Success of the blended inverse steering algorithm over MP pseudo inverse is also demonstrated.