Fragility of a shear wall building with torsional irregularity


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: VESİLE HATUN AKANSEL

Danışman: AHMET YAKUT

Özet:

Buildings with torsional irregularity represent the main focus of many current investigations. However, despite this volume of research, there is no established framework that describes adequately the seismic vulnerability of reinforced concrete shear wall systems. In this study, the three-dimensional behavior of a particular shear-wall structure under earthquake effects was examined with regard to the nonlinear behavior of the reinforced concrete assembly and the parameters that characterize the structure exposed to seismic motion for damage assessment. A three story reinforced concrete shear-wall building was analyzed using the finite element method based ANSYS software. The scaled model building was subjected to shaking table tests at Saclay, France. The project was led by the Atomic Energy Agency (CEA Saclay, France) under the “SMART 2008 Project.” The investigation was conducted in two phases. In the first phase, the results of the finite element method and experiments were examined, and were reported in this study. For time history analysis, micro-modeling was preferred due to allowing inclusion the nonlinear effects of concrete and steel for analysis. The guiding parameters (acceleration, displacement, strain) of analytical results are compared with the corresponding values that were measured in the experiments to be able to quantify the validity of models and simulation. For the comparison of v the numerical model results with the experimental results FDE (Frequency Domain Error) method was used. After comparison of the numerical model results with the experimental results, the second phase of the SMART 2008 Project was undertaken. The second phase consisted of two parts summarized as “Sensitivity Study” and “Vulnerability Analyses”. However, in this report only the sensitivity study and fragility analyses will be reported. Sensitivity study was done to understand which parameters affect the response of the structure. Twelve parametric cases were investigated under two different ground motions. Different behavior parameters were investigated. The effective damping coefficient was found to affect the structural response at 0.2 g design level as well as at 0.6 g over-design level. At the design level, it was observed that elasticity modulus of concrete and additional masses on the specimen determined as effective on the calculated results. To derive the failure probabilities of this structure under various earthquake forces for the given limit states, fragility curves were obtained. Different seismic indicators such as PGA (Peak ground acceleration), PGV (Peak ground velocity), PGD (Peak ground displacement) and CAV (Cumulative absolute velocity) were used as seismic indicators and MISD (Maximum interstory drift) were used as damage indicator for fragility curves. In all 30 time history analyses were done. Regression analyses using least squares method were performed to determine the median capacity and its deviation. Correlation coefficients of the time history data versus fitted curves obtained from the regression analyses changes between 0.65 and 0.99. The lower cases were for PGD- MISD graphs. The scatter of the fragility curves calculated for each damage limit was slightly wider. HAZUS MH MR1 (2003) damage states were also used for the calculation of the fragility curves and compared with the SMART 2008 damage states.