Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Biyolojik Bilimler Bölümü, Türkiye
Tezin Onay Tarihi: 2013
Öğrenci: MUSTAFA DEMİR
Danışman: GÜLAY ÖZCENGİZ
Özet:The members of the genus Bacillus produce a wide variety of secondary metabolites with antimetabolic and pharmacological activities. These metabolites are mostly small peptides and have unusual components and chemical bonds. These metabolites are synthesized nonribosomally by multifunctional enzyme complexes called peptide synthetases. One of those small peptides, bacilysin, is a dipeptide antibiotic composed of L-alanine and L-anticapsin which is produced and excreted by certain strains of Bacillus subtilis. Proteins that are responsible to synthesize bacilysin are encoded by bac operon. It has been shown that the biosynthesis of bacilysin is under the control of quorum sensing global regulatory pathway through the action of ComQ/ComX, PhrC (CSF), ComP/ComA in a Spo0K (Opp)-dependent manner. The objective of the study is to identify the functional roles of bacilysin biosynthesis in the regulatory cascade and idiophase cell physiology operating in B. subtilis by using gel-based and gel-free proteomics techniques. For this, we employed comparative proteome-wide analysis of the bacilysin producer B. subtilis PY79 and its bacilysin nonproducer derivative bacA::lacz::erm OGU1 strain which was recently constructed by our group. Identification via GeLC analysis of 76 differentially expressed proteins from total soluble proteome of wild-type PY79 and bacilysin minus OGU1 strain indicated the direct or indirect multiple effects of bacilysin on metabolic pathways, global regulatory systems and sporulation.