The effects of twelve quorum-sensing gene products on the expression of Bacabcde operon in Bacillus subtilis


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Biyolojik Bilimler Bölümü, Türkiye

Tezin Onay Tarihi: 2008

Öğrenci: İSMAİL ÖĞÜLÜR

Danışman: GÜLAY ÖZCENGİZ

Özet:

In Bacillus subtilis, genetic competence, sporulation and antibiotic production are controlled by quorum-sensing global regulatory mechanism. Bacilysin, being produced and excreted by certain strains of Bacillus subtilis, is a dipeptide antibiotic composed of L-alanine and L-anticapsin. We showed that the biosynthesis of bacilysin is under the control of quorum sensing global regulatory pathway through the action of ComQ/ComX, PhrC (CSF), ComP/ComA in a Spo0K (Opp)-dependent manner. Recently, the ywfBCDEF genes of B. subtilis 168 were shown to carry biosynthetic core function and renamed as bacABCDE operon. The objective of the present study is to elucidate the effects of previously-identified genes srfA, oppA, comA, phrC, phrF, phrK, comQ (comX), comP, spo0H, spo0A, abrB and codY on the expression of bacilysin biosynthetic operon bacABCDE. In order to monitor the expression of bac operon a B. subtilis strain, namely OGU1, containing a transcriptional bacA-lacZ fusion at bacA locus was constructed. Subsequently, each of the above-mentioned genes of cell density signaling was insertionally inactivated by transforming the competent cells of OGU1 with chromosomal DNA of the corresponding blocked mutant strains. The resulting strains and OGU1 as the control were cultured in PA medium and bacA-directed β-galactosidase activities were monitored. bacA-lacZ expression was severely impaired in the srfA, oppA, comA, phrC, phrF, phrK, comQ (comX), comP, spo0H and spo0A disrupted mutants. On the other hand, in the abrB single mutant bacA expression level increased nearly 2-fold during exponential growth and in the codY mutant it severely decreased during the stationary phase.