Electrochemical polymerization of trihaloalkane monomers to form branched C-backbone polymers


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: YUSUF NUR

Eş Danışman: LEVENT KAMİL TOPPARE, JALE HACALOĞLU

Özet:

Polycarbynes ( poly(hydridocarbyne), poly(methylcarbyne) and poly(phenylcarbyne) ) are a class of network polymers which are primarily composed of tetrahedrally hybridizated carbon atoms which have hydrogen, methyl or phenyl pendant group linked via three carbon-carbon single bonds to form a three dimensional network of fixed rings. This backbone o ers unusual properties on the polymer including thermal decomposition to form diamond and diamondlike carbon. In this thesis, polycarbynes were synthesized by electrolytical reduction of trihaloorganocompounds, namely chloroform, hexachloroethane, 1,1,1-trichloroethane and 1,1,1-trichlorotoluene. Poly(hydridocarbyne) was synthesized using chloroform and hexachloroethane. Poly(methylcarbyne) was synthesized from 1,1,1-trichloroethane. Poly(phenylcarbyne) was synthesized from 1,1,1-trichlorotoluene. Polycarbynes were characterized by UV/Vis spectroscopy, 1H and 13C NMR spectroscopy, FTIR and GPC. All results are found to be consistent with literature; and thus a single step cheap, safe and easy method was introduced to scientists and manufacturers in diamond science. The resulting polymers were heated upon 1000oC under nitrogen atmosphere for 24 hours yielding in the formation of diamond and diamond-like carbon. Results indicated that both diamond films and powders were successfully produced from polycarbynes. Diamonds formed from the polymers were characterized via optical microscope, SEM, X-ray and Raman spectroscopy. All results shown in thesis are completely consistent with studies previously done for polycarbynes and diamond.