Ontology learning and question answering (QA) systems


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Öğrenci: MELTEM BAŞKURT

Danışman: FERDA NUR ALPASLAN

Özet:

Ontology Learning requires a deep specialization on Semantic Web, Knowledge Representation, Search Engines, Inductive Learning, Natural Language Processing, Information Storage, Extraction and Retrieval. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this thesis we developed an ontology based question answering system that satisfies these needs by the research outputs of the areas stated above. The system allows users to enter a question about a restricted domain by means of natural language and returns exact answer of the questions. A set of questions are collected from the users in the domain. In addition to questions, their corresponding question templates were generated on the basis of the domain ontology. When the user asks a question and hits the search button, system chooses the suitable question template and builds a SPARQL query according to this template. System is also capable of answering questions required inference by using generic inference rules defined at a rule file. Our evaluation with ten users shows that the sytem is extremely simple to use without any training resulting in very good query performance.