Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2009
Tezin Dili: İngilizce
Öğrenci: Simge Çınar
Danışman: GÜNGÖR GÜNDÜZ
Özet:The aim of this study is to demonstrate the possibility of production of nanocables as an alternative to the other one dimensional metal/polymer composite structures like nanowires and nanorods. There is no certain definition of nanocables; however they could be considered as assemblies of nanowires. Nanocable structure can be defined as a core-shell structure formed by a polymeric shell and a metal core that runs continuously within this shell. To produce nanocables, two main steps were carried out. Firstly, monodispersed silver metal nanoparticles to be aligned within the cable core were produced. Investigations on reduction reactions in the presence of strong and weak reducing agents and different capping agents revealed the importance of the kinetics of reduction in the production of monodispersed nanoparticles. Use of capping agents to give a positive reduction potential, resulted in the slow reduction rates that was critical for fine tuning of the final particle sizes between 1-10 nm. Hydrazine hydrate and oleylamine/ oleic acid systems were used as strong and weak reducing agents, respectively. By using weak reducing agent, monodisperse spherical silver nanoparticles with the diameter of 2.7 nm were produced. It was shown that particles with controlled diameter and size distribution can be obtained by tuning the system parameters. Secondly, particles produced as such were electrospun within the core of the polymer nanofibers and long continuous nanocables were produced. Polyvinyl pyrrolidone and polycaprolactone were used in shell part of nanocables. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), photon correlation spectroscopy (PCS), X-ray diffraction (XRD) and surface plasmon resonance spectroscopy (SPR) analyses were carried out in order to understand the mechanism by which the nanoparticles were reduced and for further characterization of the product.