Morfolojik analiz, sözcük türü işaretleme ve bağlılık ayrıştırmanın eş zamanlı öğrenilmesi


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2020

Öğrenci: Hüseyin. Aleçakır

Danışman: HÜSEYİN CEM BOZŞAHİN

Özet:

In agglutinating languages, there is a strong relationship between morphology and syntax. Inflectional and derivational suffixes have a significant role while determining the syntactic role of the word in the sentence. This connection enables the joint learning of morphology and syntax. Apart from that, the complex morphology poses a sparsity problem. In this respect, morphological analysis and segmentation are vital for various natural language processing applications. All of these have provided the primary motivation to develop a joint learning model for morphological segmentation, morphological tagging, part-of-speech (POS) tagging, and dependency parsing. The proposed model consists of a multi-layered neural network structure. In each level, there is a bidirectional long-short memory unit (BiLSTM) to encode sequential information. Additionally, attention networks are used to compute soft alignment between encoder-decoder states in the morphological tagging component. Finally, the obtained results from each layer of the network are compared with other works from the literature. The results are very competitive on Universal Dependencies (UD) dataset.