Kalman filter based fusion of camera and inertial sensor measurements for body state estimation


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2009

Öğrenci: GÖKÇEN ASLAN AYDEMİR

Danışman: AFŞAR SARANLI

Özet:

The focus of the present thesis is on the joint use of cameras and inertial sensors, a recent area of active research. Within our scope, the performance of body state estimation is investigated with isolated inertial sensors, isolated cameras and finally with a fusion of two types of sensors within a Kalman Filtering framework. The study consists of both simulation and real hardware experiments. The body state estimation problem is restricted to a single axis rotation where we estimate turn angle and turn rate. This experimental setup provides a simple but effective means of assessing the benefits of the fusion process. Additionally, a sensitivity analysis is carried out in our simulation experiments to explore the sensitivity of the estimation performance to varying levels of calibration errors. It is shown by experiments that state estimation is more robust to calibration errors when the sensors are used jointly. For the fusion of sensors, the Indirect Kalman Filter is considered as well as the Direct Form Kalman Filter. This comparative study allows us to assess the contribution of an accurate system dynamical model to the final state estimates. Our simulation and real hardware experiments effectively show that the fusion of the sensors eliminate the unbounded error growth characteristic of inertial sensors while final state estimation outperforms the use of cameras alone. Overall we can v demonstrate that the Kalman based fusion result in bounded error, high performance estimation of body state. The results are promising and suggest that these benefits can be extended to body state estimation for multiple degrees of freedom.