CMS'te vektör bozon füzyonu ile oluşan H-WW-lvlv kanalında arayış ve 2006 test hüzmesi ile CMS'te enerji kurulumunun optimizasyonu.


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Türkiye

Tezin Onay Tarihi: 2007

Tezin Dili: İngilizce

Öğrenci: Efe Yazgan

Danışman: MEHMET TEVFİK ZEYREK

Özet:

One of the goals of the LHC is to test the existence of the Higgs Boson. This thesis presents a study of the potential to discover the Standard Model Higgs boson in the vector boson fusion (VBF) channel for the Higgs mass range 120-200 GeV/c2. The decay of Higgs bosons into WW* final state with both W-bosons decaying leptonically is considered. The main backgrounds are tt_+j and W+W-jj. This study, based on a full simulation of the CMS detector at the LHC, shows that a 5(Sigma) discovery can be done with an integrated luminosity of 12-72 fb-1 for 130-200 GeV/c2 Higgs bosons. Due to the uncertainties in the backgrounds, it is important to measure the backgrounds from data. This study shows that the major background can be measured directly to 7% with 30 fb-1. After discovering the Higgs boson mass using transverse mass template distributions is investigated in the VBF channel. The performance of the combined CMS electromagnetic and hadronic calorimeters (EB+HB) was measured at the H2 test beam at the CERN SPS during 2006 with various partivles in a large momentum range, 1-350 GeV/c. Another major contribution of this thesis is developing the method to optimize the energy reconstruction for the combined EB+HB system with which the corrected responses become 100% with 6% fluctuation and the stochastic resolution is improved from 111% to 94%.