Euler denklemlerinin çözümü için adaptasyona yönelik kartezyen ağ algoritması geliştirlmesi


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2005

Tezin Dili: İngilizce

Öğrenci: Murat Bulkök

Danışman: MEHMET HALUK AKSEL

Özet:

A Cartesian method for solution of the steady two-dimensional Euler equations is produced. Dynamic data structures are used and both geometric and solution-based adaptations are applied. Solution adaptation is achieved through solution-based gradient information. The finite volume method is used with cell-centered approach. The solution is converged to a steady state by means of an approximate Riemann solver. Local time step is used for convergence acceleration. A multistage time stepping scheme is used to advance the solution in time. A number of internal and external flow problems are solved in order to demonstrate the efficiency and accuracy of the method.