Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2011
Öğrenci: SEÇKİN ARIBAL
Danışman: MEHMET KEMAL LEBLEBİCİOĞLU
Özet:This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total airspeed, altitude, roll and yaw autopilots are designed using Matlab/Simulink environment for lateral and longitudinal control of the aircraft. Gain scheduling is used to combine controllers designed for different trim points. An optimal landing trajectory is determined using “Steepest Descent” Algorithm according to the dynamic characteristics of the aircraft. Optimal altitude trajectory is used together with a lateral guidance against cross-wind disturbance. Finally, simulations including landing under crosswind, tailwind, etc., are run and the results are analyzed in order to demonstrate the performance and effectiveness of the controllers.