İpucu tabanlı hareket düşünsel beyin bilgisayar arayüzünün gerçekleştirilmesi ve potansiyel tekerlekli sandalye uygulaması.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2010

Tezin Dili: İngilizce

Öğrenci: Berna Akıncı

Danışman: NEVZAT GÜNERİ GENÇER

Özet:

This thesis study focuses on the realization of an online cue based Motor Imagery (MI) Brain Computer Interface (BCI). For this purpose, some signal processing and classification methods are investigated. Specifically, several time-spatial-frequency methods, namely the Short Time Fourier Transform (STFT), Common Spatial Frequency Patterns (CSFP) and the Morlet Transform (MT) are implemented on a 2-class MI BCI system. Distinction Sensitive Learning Vector Quantization (DSLVQ) method is used as a feature selection method. The performance of these methodologies is evaluated with the linear and nonlinear Support Vector Machines (SVM), Multilayer Perceptron (MLP) and Naive Bayesian (NB) classifiers. The methodologies are tested on BCI Competition IV dataset IIb and an average kappa value of 0.45 is obtained on the dataset. According to the classification results, the algorithms presented here obtain the 4th level in the competition as compared to the other algorithms in the competition. Offline experiments are performed in METU Brain Research Laboratories and Hacettepe Biophysics Department on two subjects with the original cue-based MI BCI paradigm. Average prediction accuracy of the methods on a 2-class BCI is evaluated to be 76.26% in these datasets. Furthermore, two online BCI applications are developed: the ping-pong game and the electrical wheelchair control. For these applications, average classification accuracy is found to be 70%. During the offline experiments, the performance of the developed system is observed to be highly dependent on the subject training and experience. According to the results, the EEG channels P3 and P4, which are considered to be irrelevant with the motor imagination, provided the best classification performance on the offline experiments. Regarding the observations on the experiments, this process is related to the stimulation mechanism in the cue based applications and consequent visual evoking effects on the subjects.