Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2011
Tezin Dili: İngilizce
Öğrenci: Uğur Ceylan
Danışman: AYŞE NUR BİRTÜRK
Özet:The task of the recommendation systems is to recommend items that are relevant to the preferences of users. Two main approaches in recommendation systems are collaborative filtering and content-based filtering. Collaborative filtering systems have some major problems such as sparsity, scalability, new item and new user problems. In this thesis, a hybrid recommendation system that is based on content-boosted collaborative filtering approach is proposed in order to overcome sparsity and new item problems of collaborative filtering. The content-based part of the proposed approach exploits semantic similarities between items based on a priori defined ontology-based metadata in movie domain and derived feature-weights from content-based user models. Using the semantic similarities between items and collaborative-based user models, recommendations are generated. The results of the evaluation phase show that the proposed approach improves the quality of recommendations.